WINTER WHEAT - BREEDING AND GENOMIC SELECTION

Jeppe Reitan Andersen

Nordic Seed

BREEDING ACTIVITIES AT NORDIC SEED

- Winter wheat
- Spring wheat
- Winter barley
- Spring barley
- Winter rye
- Peas
- Field beans

WINTER WHEAT YIELDS IN DK FARMER UNION TRIALS

Nordic Seed

'YIELD POTENTIAL' - IS NOT ABSOLUTE

- Determined by
 - Genetics
 - Environment
 - Climate
 - Management
 - Interactions...

• Aim: develop varieties with a combination of desirable genes/characters to increase the chance of realizing yield potential in more environments.

INCREASING YIELD POTENTIAL – THE ART OF BREEDING

- Create diversity
 - crossing
- Selection
- Fixate traits
 - YIELD
 - Agronomy
 - Straw
 - Hardiness
 - Disease resistance
 - Quality
- THROW THE GOOD, KEEP THE BEST

BREEDING GAIN DEFINED BY:

Genetic gain over time = $\frac{intensity*accuracy*genetic variation}{Time per breeding cycle}$

- Selection intensity: strong selection in large numbers (crosses, populations)
- Selection accuracy: replicated trials,
 - Separate genetics from noise (environment)
 - Reliable DNA markers
- Genetic variation: introduce new (useful) genes in breeding pool
 - Not always desirable, 'wild' DNA is resistant to yield
- Time: decrease time per cycle (DH, shuttle breeding)

Year 1 – Crossing

Selection of crossing parents based on yield, agronomical characters, disease, DNA marker data

SELECTION IN THE FIELD - DISEASES

- Septoria
- Rusts
- Mildew
- Fusarium
- Virus

- - -

SELECTION IN THE FIELD - AGRONOMY

Genetic gain over time = $\frac{intensity*accuracy*genetic variation}{Time per breeding cycle}$

YIELD STABILITY: REPLICATIONS, LOCATIONS, YEARS...

POSTHARVEST: FALLING NO., ZELENY, OTHER

Nordic Seed HVEDEMEL®

GETTING TO THE DNA

SINGLE NUCLEOTIDE POLYMORPHISM - SNP

BREEDING – A NUMBERS GAME

Encoding genes	Desired phenotype in
1 gene	1/4 of offspring
2 genes	1/16 of offspring
3 genes	1/64 of offspring
4 genes	1/256 of offspring
5 genes	1/1024 of offspring
6 genes	1/4096 of offspring

EASY: BARLEY YELLOW DWARF RESISTANCE

PROJECT: WHEAT QUALITY

- Industrial PhD project: Peter Skov Kristensen
- Århus University (Just Jensen, Fabio Cericola, et al.)
- ~700 breeding lines phenotyped
 - Protein
 - HLW, TGW
 - Hagbergs, zeleny

GENOMIC SELECTION – TEXT BOOK

• Other traits more difficult – more genes, smaller effects

